## Measure and Integration, Oral exam, 03/11/2014

(1) Let $\Omega$ be an infinite set and let $\left(\omega_{n}\right)$ be a sequence of distinct elements of $\Omega$. Let $\left(a_{n}\right)$ be a sequence of positive numbers. Define $\psi_{n}: P(\Omega) \rightarrow \mathbb{R}$ by

$$
\psi_{n}(E)=\left\{\begin{array}{ll}
1, & \omega_{n} \in E, \\
0, & \omega_{n} \notin E,
\end{array} \quad E \in \Omega\right.
$$

Define $\mu: P(\Omega) \rightarrow[0, \infty]$ by

$$
\mu(E)=\sum_{n=1}^{\infty} a_{n} \psi_{n}(E), \quad E \subset \Omega
$$

Show that $\mu$ is a measure on $P(\Omega)$.
(2) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f: \Omega \rightarrow \mathbb{R}$ be a measurable function such that

$$
\{\omega \in \Omega: f(\omega)>0\}
$$

has positive measure. Show that there exists $N \in \mathbb{N}$ such that the set

$$
\{\omega \in \Omega: f(\omega)>1 / N\}
$$

has positive measure.
(3) Let $f \in \mathcal{L}(\Omega, \mathcal{A}, \mathbb{R})$ and assume that for all $A \in \mathcal{A}$

$$
\int_{A} f(\omega) d \mu=0
$$

Show that $f=0$ almost everywhere.
Hint: use previous exercise.
(4) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $f_{n}, n \in \mathbb{N}$, be nonnegative measurable numerical functions on $\Omega$. Show that

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \leq \int_{\Omega}\left(\limsup _{n \rightarrow \infty} f_{n}\right) d \mu
$$

(5) Calculate

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} e^{-n x^{2}+x} d x
$$

(6) Show via the dominated convergence theorem that for $a, b>0$

$$
\int_{0}^{1} \frac{t^{a-1}}{1+t^{b}} d t=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n b+a}
$$

(7) Let $f \in \mathcal{L}(\Omega, \mathcal{A}, \mu)$ and let $M_{n}$ be mutually disjoint measurable sets and let $M=\bigcup_{n=1}^{\infty} M_{n}$. Show that

$$
\int_{M} f d \mu=\sum_{n=1}^{\infty} \int_{M_{n}} f d \mu
$$

(8) Calculate the integral

$$
\int_{0}^{\pi / 2} \frac{\log (1+\sin \varphi)}{\sin \varphi} d \varphi
$$

via

$$
\int_{0}^{\pi / 2} \frac{\log (1+a \sin \varphi)}{\sin \varphi} d \varphi
$$

Hint: Differentiate under the integral sign. Use a suitable substitution for integrands involving trigonometric functions.
(9) What can be said about the convergence of

$$
\int_{0}^{\infty} \frac{\sin x}{x^{p}} d x
$$

for $p \in \mathbb{R}$ ?
(10) Determine $\int_{A} f(x, y) d x d y$ when

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, y \geq 0\right\}, \quad f(x, y)=\frac{e^{(1-y)^{3 / 2}}}{(1+y)^{1 / 2}}
$$

(11) Let $\mathcal{A}$ be the Borel $\sigma$-algebra on $\Omega=[0, \infty)$ and let $\mu$ be a $\sigma$-finite measure defined on $\mathcal{A}$.
(a) Show that the function $f(x)=\mu([x, \infty)), x \geq 0$, is measurable with respect to $\mathcal{A}$.
Hint: What happens when $x$ increases?
(b) Show that

$$
\int_{0}^{\infty} x \mu(d x)=\int_{0}^{\infty} \mu([t, \infty)) d t
$$

where the integral on the right-hand side is taken with respect to Lebesgue measure.
Hint: Define, for $x, t \geq 0$,

$$
g(x, t)= \begin{cases}1 & \text { if } t \leq x \\ 0 & \text { otherwise }\end{cases}
$$

and note that $x=\int_{0}^{\infty} g(x, t) d t$.
(12) Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $1<p<q<r \leq \infty$. Show that

$$
\mathcal{L}^{q}(\Omega) \subset \mathcal{L}^{p}(\Omega)+\mathcal{L}^{r}(\Omega) .
$$

Hint: Let $f \in \mathcal{L}^{q}(\Omega), E=\{\omega \in \Omega:|f(\omega)|>1\}$, and decompose $f$ by $f=f \mathbf{1}_{E}+f \mathbf{1}_{\Omega \backslash E}$.
(13) Let the functions $f, g \in L^{1}(\mathbb{R})$ be defined by

$$
f=\mathbf{1}_{[-a, a]}, \quad a>0, \quad \text { and } \quad g=\mathbf{1}_{[-b, b]}, \quad b \geq a
$$

Calculate $f \star g$.

